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Abstract

We propose a method for microscope point spread function computation in which both design and actual acqui-

sition parameters are explicitly introduced in the integrals describing the electromagnetic field in the focal region. This

model therefore combines the ease of use of the Gibson and Lanni scalar approach with the accuracy of the Török and

Varga method. We also compare some theoretical predictions of this model with those of a scalar model. In particular,

the scalar model underestimates the point spread function size. This has practical application, for example when de-

convolving microscope images or analyzing point spread functions. The method may also be used for confocal

microscopy.
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1. Introduction

The description of waves in focal regions has

lead to numerous efforts by many authors ([1] and
references therein). The computation of the point

spread function of the optical microscope has

generated intensive work to establish theoretical

models of image formation [2–10], mainly because

of applications in biological and material sciences.

A commonly used diffraction model for micro-

scope objective is that of Gibson and Lanni [2]. It

is based on scalar diffraction theory. One advan-

tageous feature of this model is that it specifically
introduces as parameters to compute the PSF the

design conditions of use of the objective, as rec-

ommended by the manufacturer, and the actual

acquisition conditions, when known by the user. It

is also implemented in the XCOSM package [11].

This software from the Biomedical Computer

Laboratory (Washington University, St. Louis,

Missouri, USA) provides the implementation of
several algorithms for deconvolving 3D images, as
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well as for computing point spread functions from

optical and confocal microscopes. It runs on Unix

workstations and PCs.

For high numerical aperture objectives, the ex-

tremal incident rays are impinging at large angles

of incidence on the various interfaces separating
the microscope objective from the specimen and as

a consequence, vectorial theories of diffraction

seem mandatory. Such electromagnetic models are

indeed available [3–10]. They however are less di-

rectly usable by non-specialists, as practical ac-

quisition conditions do not directly appear as

computational parameters.

We propose a diffraction model for point spread
function computation, which combines the ad-

vantage of the Gibson and Lanni model [12],

namely the clear introduction of design and actual

conditions, with the rigor of the integral repre-

sentation of T€oor€ook and Varga [10].

2. Gibson and Lanni model

Gibson and Lanni [2] modeled the point spread

function (PSF) of an optical microscope objective

using the scalar diffraction theory of light.

Throughout this paper, we will only consider the

intensity PSF as it corresponds to what one can

easily measure with an optical microscope. The

intensity PSF is then given by

PSFðx; y; zÞ ¼
Z 1

0

J0 kaq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

z

r !�����
� expðiW ðqÞÞqdq

�����
2

: ð1Þ

When the microscope objective is used under de-
sign conditions as recommended by the manufac-

turer, the phase term W ðqÞ reduces to a defocus
term, and Eq. (1) simply represents the classical

3D Airy distribution [12]. When differences exist

between the design conditions and the actual

conditions, this distribution is deformed, which

materializes the presence of aberrations.

To calculate W ðqÞ, one considers the path dif-
ference between one optical ray entering the ob-

jective under design conditions and one entering

the objective under the actual conditions. Fig. 1

describes the considered setup. The optical path

difference is then given by

OPD ¼ ½ABCD� � ½PQRS�: ð2Þ

One has to compute OPD with respect to the

following quantities: h is the angle of propagation
of both rays entering the frontal lens of the ob-

jective; ts the depth of the specimen under the
cover glass; ns the index of refraction of the

specimen; tg the thickness of the cover glass; ng
the index of refraction of the cover glass; ti the
thickness of the immersion medium layer; ni the
index of refraction of the immersion medium; and

n is the index of refraction of the objective front
lens.

The parameters with an asterisk * are values for

the design conditions of use of the objective, those

without an asterisk are the actual ones. Taking
into account the Snell–Descarte law of refraction

and the fact that the microscope obeys the Abbe

sine condition, Gibson and Lanni propose for the

computation of the OPD:

OPD ¼ OPDg þOPDi þOPDs: ð3Þ

The term OPDg represents the aberration term due

to the use of an improper cover glass (index of

refraction or thickness differing from the design
values)

Fig. 1. Optical rays entering the frontal lens of a microscope

objective in the Gibson and Lanni model in design conditions

(dashed line) and actual conditions (solid line). The optical path

difference to be computed is given by OPD ¼ ½ABCD�
� ½PQRS�.
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OPDg ¼ ngtg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n sin h

ng

� �2s

� n	gt
	
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n sin h

n	gi

 !2vuut : ð4Þ

The aberrations possibly induced by an incorrect

immersion medium are given by

OPDi ¼ niti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n sin h

ni

� �2s

� n	i t
	
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n sin h

n	i

� �2s
: ð5Þ

The specimen lying at depth ts, under the coverslip,
one has the supplemental term

OPDs ¼ nsts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n sin h

ns

� �2s
: ð6Þ

The computation of the intensity PSF described by

Eq. (1) is then performed by computing the vari-
ous terms (Eqs. (3)–(6)) with

W ðqÞ ¼ kOPD and q ¼ n sin h=NA: ð7Þ
This model is very convenient for computing PSFs

in the sense that design and actual conditions of

acquisition directly appear as input parameters
(see Appendix A). It however suffers from several

limitations.

First the apodizing function aðhÞ ¼ ðcos hÞ1=2
for an aberration free aplanetic system obeying the

sine condition is not included in Eq. (1).

Secondly, for a high numerical aperture objec-

tive, the extremal incident rays are impinging at

large angles of incidence on the two interfaces
(immersion medium to cover glass, and cover glass

to specimen) separating the microscope objective

from the specimen. Even if one considers ran-

domly or circularly polarized light, which would

have for effect of averaging the various polariza-

tion contributions, these extremal rays are con-

sidered to be transmitted without reflections,

namely with constant intensity, an assumption
which may be questionable for high incidence rays

or when large differences exist in the refraction

indices.

As a consequence, one can question the accu-

racy of the predictions by this model. Even if

‘‘Gibson and Lanni demonstrated good agree-

ments between their numerical results and experi-

mental measurements of the aberrated point

spread function. This and some other theories
confirm that, while it is essential to construct

mathematically rigorous theories, it is sometimes

possible to obtain accurate predictions using ap-

proximate physical models based on wave optics’’

(from [13]), the recent progress in instrumentation

(compared to the experiments described in [2])

should permit to better compare experimental data

with computations from this scalar model and
from a vectorial model.

3. Török and Varga model

An elegant description of high numerical aper-

ture focusing of electromagnetic waves is that of

Wolf [3,4], who proposed a formalism based on
the angular spectrum of plane waves, from which

integral formulas are obtained. This formulation

was later on subsequently generalized by T€oor€ook
et al. [6–8] who considered the focusing of an

electromagnetic wave through a planar interface

separating materials with mismatched indices of

refraction. Finally, a further extension of this

method describes electromagnetic waves focused
through a stratified medium [10]. We recall here

briefly the main results, using the same notation as

in [10].

One considers a linearly polarized (along the x-

axis) monochromatic wave focused through a

three-layer medium (see Fig. 2). The origin of the

ðx; y; zÞ coordinate system is at the Gaussian focus
point. The intensity illumination PSF at point
Pðx; y; zÞ can then be computed as

PSFðx; y; zÞ ¼ jEj2 ¼ E3x
�� þ E3y þ E3z

��2; ð8Þ

the components being given by (with / in spherical
polar coordinates)

E3x ¼ �iðI0 ill þ I2 ill cos 2/Þ;
E3y ¼ �iðI2 ill sin 2/Þ;
E3z ¼ �2I1 ill cos/;

ð9Þ
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I0ill¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh1

p
sinh1J0ðk1ðx2þy2Þ1=2 sinh1Þ

�ðT2sþT2p cosh3Þexpðik0WiÞ
�expðik3zcosh3Þdh1;

I1ill¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh1

p
sinh1J1ðk1ðx2þy2Þ1=2 sinh1Þ

�T2p sinh3 expðik0WiÞ ð10Þ
�expðik3zcosh3Þdh1;

I2ill¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh1

p
sinh1J2ðk1ðx2þy2Þ1=2 sinh1Þ

�ðT2s�T2p cosh3Þexpðik0WiÞ
�expðik3zcosh3Þdh1:

The so-called initial aberration function [10] is

given by

Wi ¼ h2n3 cos h3 � h1n1 cos h1: ð11Þ

The transmission coefficient for a three-layer me-

dium is given by

T2s;p ¼
t12s;pt23s;p expðibÞ

1þ r12s;pr23s;p expð2ibÞ
ð12Þ

with b ¼ k2jh2 � h1j cos h2 [14] and the Fresnel

coefficients for transmission and reflection being
given by

tnnþ1;s ¼
2nn cos hn

nn cos hn þ nnþ1 cos hnþ1
;

tnnþ1;p ¼
2nn cos hn

nnþ1 cos hn þ nn cos hnþ1
;

rnnþ1;s ¼
nn cos hn � nnþ1 cos hnþ1

nn cos hn þ nnþ1 cos hnþ1
;

rnnþ1;p ¼
nnþ1 cos hn � nn cos hnþ1

nnþ1 cos hn þ nn cos hnþ1
:

ð13Þ

This vectorial model has been shown to be com-

patible with the Huygens–Fresnel approach [9] of

diffraction in the case of a two-layer medium

(when n2 ¼ n3 for example). It has been success-
fully used to compute the PSF of an optical mi-

croscope and to show how adapting the cover

glass thickness permits to compensate the spherical

aberration introduced by immersion medium and
specimen refractive indices mismatch [10]. It has

also permitted to study aberration correction using

a Zernike expansion of the aberration function

[15].

We will now show how one can combine the

above approach with the ease of use of the Gibson

and Lanni model.

4. Discussion

In biological microscopy, three cases are

commonly to be considered: dry objectives, oil

immersion objectives and water immersion objec-

tives. As pointed out by T€oor€ook and Varga [10], for
such layers the Fresnel reflection coefficients rs;p
given by Eq. (13) are much smaller than unity. The

denominator of T2s;p can therefore be considered as
unity. As a consequence, the overall aberration

function for a three-layer medium can be written

as

W ¼
X3
j¼1

hjðnjþ1 cos hjþ1 � nj cos hjÞ: ð14Þ

If the numerical aperture of the illuminating ob-

jective is limited such that there is no non-ordinary
refraction at both interfaces, Eq. (14) may be re-

written with Gibson and Lanni notations

(q ¼ n1 sin h1=NA, n1 sin a ¼ NA, n3 ¼ ns, n2 ¼ ng,
h2 ¼ ts and h1 ¼ ts þ tg) as

Fig. 2. Diagram showing an electromagnetic wave focused by a

lens through a three-layer stratified medium in the T€oor€ook and

Varga approach. The origin O of the ðx; y; zÞ reference frame is
at the unaberrated Gaussian focus point.
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W ¼ �ðts þ tgÞni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s

þ nsts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ns

� �2s

þ ngtg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ng

� �2s
: ð15Þ

Comparing Eq. (15) with Eq. (4)–(7) highlights

the parallel, which exists between both methods.
The second term of the above equation represents

the aberration introduced by the focalization of

the wave at depth (h2 ¼ ts) under the second
nterface, namely under the cover glass. It is iden-

tical to the term given by Eq. (6). The third term

represents the aberration introduced by the cover

glass. It is identical to the first term of Eq. (4), the

second term of Eq. (4) being introduced has a
compensation from the objective to express that

when a design (thickness and refraction index)

cover glass is used, its aberration cancels with that

introduced by the objective.

The first term is to be split into two

Wi ¼ Wi1 þ Wi2

¼ �tgni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s

� tsni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s
: ð16Þ

Eq. (16) represents the so-called initial aberration

function [10]. The first term of Eq. (16) only de-

pends on q and not on the specimen depth. So to
correct this initial spherical aberration, one has
also to compensate for that term. This is done by

saying that the objective will introduce an aber-

ration given by

Wobj ¼ þtg	ni	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni	

� �2s
ð17Þ

so that when a design thickness cover glass is used

in conjunction with a design immersion medium

refractive index, these phase factors compensate.

T€oor€ook and Varga [10] consider the focusing of a
wave into the medium at a certain depth under the

cover glass, which explains the presence of the

term Wi2 in Eq. (16), which does not appear in Eqs.

(4)–(7). In the Gibson and Lanni model [2], one

considers on the contrary a scan of a point like

source to acquire a 3D PSF. As a consequence, the

immersion medium layer thickness changes during
the scan. If one expresses this change as a function

of the defocus, one obtains

ti ¼ ni
z
ni

�
þ tg	

ng	

�
� tg
ng

�
þ ti	

ni	

�
� ts
ns

��
: ð18Þ

Inserting Eq. (18) into Eq. (5), one obtains for the

optical path difference the final expression

OPD ¼ niz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s

þ ngtg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ng

� �2s0
@

� ni
ng

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s 1
A

� n	gt
	
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

n	g

 !2vuut
0
B@

� ni
n	g

 !2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s 1
CA

� n	i t
	
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

n	i

� �2s0
@

� ni
n	i

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s 1
A

� nsts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ns

� �2s0
@

� ni
ns

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NAq

ni

� �2s 1
A: ð19Þ

We recognize in the first term of Eq. (19) the term

Wi2 of Eq. (16), which proves that in fact the
Gibson and Lanni approach of calculating the
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optical path difference, including terms relative to

the thickness and index of refraction of the im-

mersion layer is indeed equivalent to the T€oor€ook
and Varga approach. As a consequence, we pro-

pose to combine the integral equations of T€oor€ook
and Varga with the Gibson and Lanni method for

computing the phase difference, so that Eqs. (8)

and (9) are to be calculated with Eqs. (4)–(6) and

with

I0 ill ¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffi
cos h1

p
sin h1J0ðk1ðx2 þ y2Þ1=2 sin h1Þ

� ðt12st23s þ t12pt23p cos h3Þ
� expðik0OPDÞdh1;

I1 ill ¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffi
cos h1

p
sin h1J1ðk1ðx2 þ y2Þ1=2 sin h1Þ

� ðt12pt23p sin h3Þ ð20Þ
� expðik0OPDÞdh1;

I2 ill ¼
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffi
cos h1

p
sin h1J2ðk1ðx2 þ y2Þ1=2 sin h1Þ

� ðt12st23s � t12pt23p cos h3Þ
� expðik0OPDÞdh1:

5. Numerical results

Fig. 3 shows point spread functions computed

at k ¼ 488 nm and using Eq. (20) for an air im-

mersion (ni	 ¼ 1) objective of numerical aperture
0.9, designed to be used with a cover glass of index

ng	 ¼ 1:54 and thickness tg	 ¼ 170 lm and at a

depth of 50 lm below the cover glass in a watery

medium ns ¼ 1:33. The actual cover glass thickness
is: (a) 120, (b) 170 and (c) 220 lm with all other
actual parameters having their design values.

(Appendix A shows the various parameters used in

the Gibson and Lanni approach.)

These curves are identical to those published in

[10] (Fig. 4(b)), which have been computed with

Eq. (10) and introducing the correction for a 170

lm cover glass. The sole difference is that when

using Eq. (20) with the Gibson and Lanni pa-
rameters, one computes the PSF in an absolute

reference frame centered at the geometrical posi-

tion of the focal point, while curves presented in

Fig. 3. Optical axis profile of the point spread function for an

air immersion (ni ¼ ni	 ¼ 1) objective of numerical aperture
NA¼ 0.9 imaging at k ¼ 488 nm a specimen at a depth of 50

lm in a watery medium (ns ¼ 1:33) through a cover glass
(ng ¼ ng	 ¼ 1:54, tg	 ¼ 170 lm) of thickness 120 lm (curve a),

170 lm (curve b) and 220 lm (curve c).

 

 

Fig. 4. Lateral profile of the point spread function at k ¼ 488
nm for a water immersion objective with NA¼ 1.3 (all pa-
rameters satisfying the design conditions) and an oil immersion

objective with NA¼ 1.4 and with a specimen depth of 15 lm.
Dashed curves: scalar model. Solid curves: vectorial model with

unpolarized radiation.
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[10] are displayed with the distance of the last in-

terface from the unaberrated Gaussian focus as

horizontal axis. We also computed these curves

using Eq. (12) without approximation on the

Fresnel reflection coefficients rs;p given by Eq. (13).
The difference is below 1%, which justifies the
approximation made by T€oor€ook and Varga to ob-
tain Eq. (14), and as a consequence also validates

the equivalence with the Gibson and Lanni ap-

proach we highlighted.

In Fig. 4, we show the lateral PSF profile for a

water immersion objective (ni ¼ 1:33) with

NA¼ 1.3 imaging in a watery medium (ns ¼ 1:33)
and for an oil immersion objective (ni ¼ 1:515) with
NA¼ 1.4 imaging in a watery medium (ns ¼ 1:33)
at a depth of 15 lm. The dashed curves are com-
puted with the Gibson and Lanni model and the

solid curves with our method. In both case, all ac-

tual parameters satisfy the design conditions. A

random emission of light at k ¼ 488 nm is consid-
ered so that the / dependence in Eq. (9) disappears
[5,6]. Fig. 4 shows that the resolution (measured at
FWHM of the distribution) is in fact overestimated

(by 14%) when using a scalar model for the water

immersion objective. This has consequence when

deconvolving data from a fluorescence microscope:

as the scalar model underestimates the actual PSF

size, measurement on objects with extension similar

to the objective resolution will result in an overes-

timation of the actual object size. Also, when ana-
lyzing an experimental PSF [16], the use of a scalar

model may lead to an underestimation of the actual

numerical aperture.

For a NA¼ 1.4 oil immersion objective, the
lateral size difference is 15% when the specimen is

placed just below the cover glass. One could argue

that when using the same NA¼ 1.4 objective to
image a specimen at a depth of 15 lm, the error on
the lateral resolution is only 4% (Fig. 4). However

the loss in resolution is such that using a water

immersion objective would give a better resolution

despite the lower NA. These results confirm the

statement by Sheppard and T€oor€ook suggesting that
‘‘use of high aperture scalar theory is not partic-

ularly useful as an approximation to the vectorial

case’’ [17], at least when there is no aberration, and
show that it is indeed necessary to use a vectorial

model when precise quantitative measurements are

to be done after a deconvolution if using a high

NA objective. Note that a scalar model may give

results with the desired accuracy for lower NA

objectives: the error on the lateral resolution is

below 3% for NA¼ 0.8.
Finally, the similarity between Eq. (1) and Eq.

(20) shows that only little modifications of the

XCOSM code may permit to merge the ease of use

of this software with the more accurate model of

T€oor€ook and Varga, therefore facilitating its adop-
tion by non-specialists in optics.

6. Application to confocal and multiphoton micros-
copy

Confocal [18] and multiphoton [19] microscopy

are widely used for 3D investigations of biological

structures because of their inherent optical sec-

tioning capabilities and deeper penetration depth.

Theoretical treatments of confocal fluorescence

microscopy have been presented by several authors
[20–22]. These models are based on the high-angle

vectorial diffraction integrals proposed by Richards

and Wolf [3,4]. Assuming that the fluorescent par-

ticle acts as a perfectly isotropic radiator, one shows

that the confocal microscope PSF is obtained by

multiplying the illumination PSF by the detection

PSF. For multiphoton microscopy, the probability

of excitation of the dipole is proportional to the
intensity of the illumination to the power of the

order of the multiphoton process. Fluorescence is

however known to be generally polarized, and di-

pole emission models better the fluorescence pro-

cess than isotropic radiation. However, models

used to describe the image formation process in

confocal and multiphoton microscopy and con-

sidering dipole emission assume that the dipole is
located in a homogeneous medium [23–26]. This

assumptionmay be fulfilled for example when using

a water immersion objective working without cover

glass. A rigorous treatment of dipole imaging

through dielectric interfaces remains to be pro-

posed. Ref. [27] sets up the basis of such a theory.

However, when the fluorescent molecule can

freely rotate between excitation and emission, for
unpolarized or circularly polarized illumination

and detection, and as long exposure time (com-
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pared to fluorescence life-time) is required, the

image is obtained by averaging over all dipole

orientations. In that case, one finds that the PSF of

a confocal microscope observing dipoles is the

same as if an isotropic radiator is considered [23]

PSFconfðx; y; zÞ ¼ jI0 illj2
�

þ 2jI1 illj2 þ jI2 illj2
�

� jI0 detj2
�

þ 2jI1 detj2 þ jI2 detj2
�
:

ð21Þ

The diffraction integrals are computed at the illu-

mination and detection wavelengths and for finite
size pinhole, a convolution with the pinhole aper-

ture is necessary (note that in the XCOSM imple-

mentation of this model, illumination and detection

PSFs are computed at the same observation wave-

length, which constitutes another approximation).

Under this assumption of freely rotating fluo-

rescent molecules, our model given by Eq. (20)

may also be used to compute confocal and mul-
tiphoton PSFs. We would like to emphasize one

obvious limitation of this approach. Fresnel coef-

ficients differ when for example propagation oc-

curs from oil to glass or from glass to oil. So, for

focusing through a layered medium, the illumina-

tion and detection PSFs should be slightly different

even if computed at the same wavelength. We be-

lieve the difference is very small for water or oil
immersion objectives, and we will assume the de-

tection PSF may be computed as the illumination

PSF using Eq. (20). This approximation may

however fail for air immersion objectives, because

of the large difference in the refractive indexes.

7. Conclusion

We have shown how the approach of Gibson

and Lanni to calculate the phase difference be-

tween optical rays in actual and design conditions

of use of a microscope objective can be combined

with the vectorial model of T€oor€ook and Varga. One
then obtains a convenient model to precisely

compute the point spread function of a microscope
objective, which explicitly introduces experimental

and design acquisition parameters. Comparing

simulations of the scalar model with ours shows

that for high NA objectives, noticeable differences

appear. For precise deconvolution results and

quantitative measurements, use of a vectorial

model is therefore mandatory. Our approach may

also be used to compute point spread functions for

confocal microscopy, under some assumptions

relative to the fluorescent dye.
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Appendix A

List of the parameters of the XCOSM package

to compute the PSF of an optical microscope:

Nxy: 128 size of the image in x and y

deltaxy: 0.068 pixel size in image space in

lm
Nz: 128 size of the image in z

(optical axis)

deltaz: 0.1 pixel size in z in lm
mag: 100 lateral magnification

NA: 0.9 numerical aperture of the

objective

workdist: 0.16 working distance of the

objective in mm
lamda: 0.000488 fluorescence wavelength in

mm

slipdesri: 1.525 cover glass design refractive

index

slipactri: 1.525 cover glass actual refractive

index

slipdesth: 0.170 cover glass design thickness

in mm
slipactth: 0.120 cover glass actual thickness

in mm

medesri: 1 immersion medium design

refractive index

medactri: 1 immersion medium actual

refractive index

specri: 1.33 specimen refractive index

specthick: 0.050 specimen depth in mm
desot: 160 design tube length in mm

actot: 160 actual tube length in mm
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(Note that in a modern, infinity-corrected

microscope, the two last parameters are meaning-

less.)
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